

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0130 of 26 March 2015

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the Deutsches Institut für Bautechnik European Technical Assessment: Trade name of the construction product Injection system Chemfix 500 for concrete Product family Bonded anchor with anchor rod for use in concrete to which the construction product belongs CHEMFIX PRODUCTS LTD Manufacturer Mill Street East DEWSBURY, West Yorkshire WF12 9BQ GROSSBRITANNIEN Chemfix Plant 2 Manufacturing plant This European Technical Assessment 27 pages including 3 annexes which form an integral part contains of this assessment This European Technical Assessment is Guideline for European technical approval of "Metal issued in accordance with Regulation (EU) anchors for use in concrete", ETAG 001 Part 5: "Bonded No 305/2011, on the basis of anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-15/0130 English translation prepared by DIBt

Page 2 of 27 | 26 March 2015

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.

Page 3 of 27 | 26 March 2015

Specific Part

1 Technical description of the product

The "Injection System Chemfix 500 for concrete" is a bonded anchor consisting of a cartridge with injection mortar Chemfix 500 and a steel element. The steel element consist of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance for design according to TR 029 and TR 045	See Annex C 1 to C6
Characteristic resistance for design according to CEN/TS 1992-4:2009 and TR 045	See Annex C 7 to C 12
Displacements under tension and shear loads	See Annex C 13 / C 14

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance determined (NPD)

3.3 Hygiene, health and the environment (BWR 3)

Not applicable.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

- 3.5 Protection against noise (BWR 5) Not applicable.
- 3.6 Energy economy and heat retention (BWR 6) Not applicable.

European Technical Assessment ETA-15/0130

Page 4 of 27 | 26 March 2015

English translation prepared by DIBt

3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

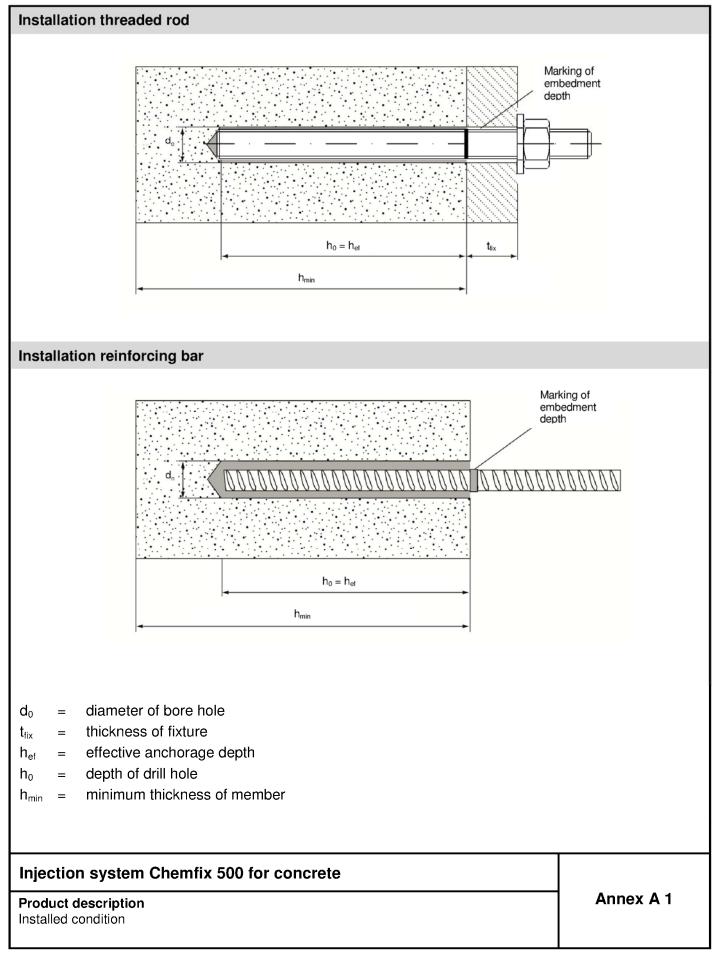
3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

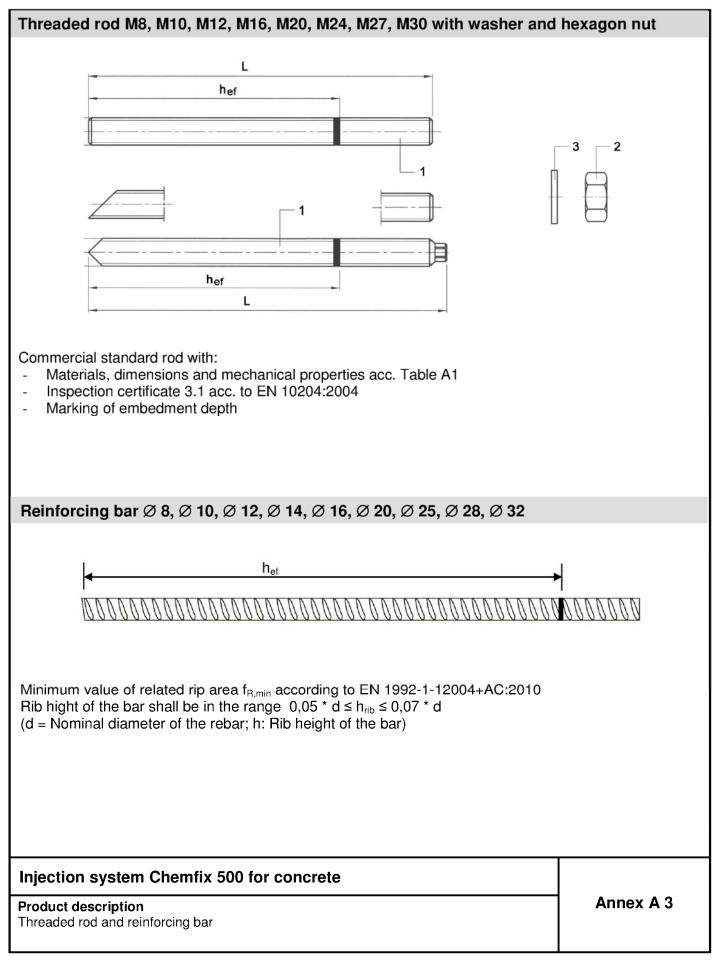
Product	Intended use	Level or class	System
Metal anchors for use in concrete (heavy-duty type)	For fixing and/or supporting concrete structural elements or heavy units such as cladding and suspended ceilings	_	1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 26 March 2015 by Deutsches Institut für Bautechnik

Andreas Kummerow p.p. Head of Department *beglaubigt:* Baderschneider



Injection mortar: Chemfix 500			
Side-by-Side cartridge 385ml, 444ml, 585ml, 1000ml and 1400ml			
Cartridge label: Chemfix 500, processing notes, ch processing time (depending on the temperature), v	narge-code, shelf li with as well as with	ife, hazard-code, cu nout travel scale	ıring- and
Injection system Chemfix 500 for concrete	2		
Product description Injection system			Annex A 2

Table A1: Materials Part Designation Material Steel, zinc plated \geq 5 µm acc. to EN ISO 4042 or Steel, hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 Steel, EN 10087:1998 or EN 10263:2001 1 Anchor rod Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009 $A_5 > 8\%$ fracture elongation Steel acc. to EN 10087:1998 or EN 10263:2001 Property class 4 (for class 4.6 rod) EN ISO 898-2:2012, 2 Hexagon nut, EN ISO 4032:2012 Property class 5 (for class 5.8 rod) EN ISO 898-2:2012, Property class 8 (for class 8.8 rod) EN ISO 898-2:2012 Washer, EN ISO 887:2006, 3 EN ISO 7089:2000, EN ISO 7093:2000 Steel, zinc plated or hot-dip galvanised or EN ISO 7094:2000 Stainless steel Material 1.4401 / 1.4404 / 1.4571, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 1 Anchor rod ≤ M24: Property class 70 EN ISO 3506-1:2009 $A_5 > 8\%$ fracture elongation Material 1.4401 / 1.4404 / 1.4571 EN 10088:2005. 2 > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 Hexagon nut, EN ISO 4032:2012 Section M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009 Washer, EN ISO 887:2006, EN ISO 7089:2000, EN ISO 7093:2000 Material 1.4401, 1.4404 or 1.4571, EN 10088-1:2005 3 or EN ISO 7094:2000 High corrosion resistance steel Material 1.4529 / 1.4565, EN 10088-1:2005, > M24: Property class 50 EN ISO 3506-1:2009 1 Anchor rod ≤ M24: Property class 70 EN ISO 3506-1:2009 $A_5 > 8\%$ fracture elongation Material 1.4529 / 1.4565 EN 10088-1:2005. 2 Hexagon nut, EN ISO 4032:2012 > M24: Property class 50 (for class 50 rod) EN ISO 3506-2:2009 ≤ M24: Property class 70 (for class 70 rod) EN ISO 3506-2:2009 Washer, EN ISO 887:2006, 3 EN ISO 7089:2000, EN ISO 7093:2000 Material 1.4529 / 1.4565, EN 10088-1:2005 or EN ISO 7094:2000 **Reinforcing bars** Bars and de-coiled rods class B or C Rebar EN 1992-1-1:2004+AC:2010, 1 f_{vk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 Annex C $f_{uk} = f_{tk} = k \cdot f_{vk}$

Injection system Chemfix 500 for concrete

Product description Materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic action for Performance Category C1: M12 to M30, Rebar Ø12 to Ø32.
- Seismic action for Performance Category C2: M12 and M16.

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2000.
- Strength classes C20/25 to C50/60 according to EN 206-1:2000.
- Non-cracked concrete: M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: M12 to M30, Rebar Ø12 to Ø32.

Temperature Range:

- I: 40 °C to +40 °C (max long term temperature +24 °C and max short term temperature +40 °C)
- II: 40 °C to +60 °C (max long term temperature +43 °C and max short term temperature +60 °C)
- III: 40 °C to +72 °C (max long term temperature +43 °C and max short term temperature +72 °C)

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist (high corrosion resistant steel)

(high corrosion resistant steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of bonded anchors", Edition September 2010 or
 - CEN/TS 1992-4:2009
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
 - EOTA Technical Report TR 045 "Design of Metal Anchors under Seismic Action", Edition February 2013
 - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure.
 - Fastenings in stand-off installation or with a grout layer are not allowed.

Installation:

- Dry or wet concrete: M8 to M30, Rebar Ø8 to Ø32.
- Flooded holes (not sea water): M8 to M30, Rebar Ø8 to Ø32.
- Hole drilling by hammer or compressed air drill mode.
- Overhead installation allowed.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Injection system Chemfix 500 for concrete

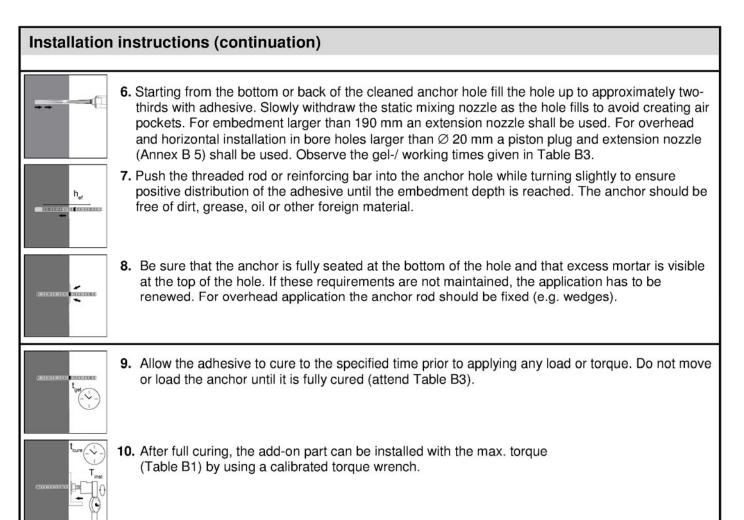
Intended Use Specifications Annex B 1

Table B1: Installation	parameters fo	or threa	aded ro	d						
Anchor size		M 8	M 10	M 12	M 16	M 20	M 24	M 27	M 30	
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	24	28	32	35	
Effective encharage depth	h _{ef,min} [mm] =	60	60	70	80	90	96	108	120	
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	192	240	288	324	360	
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33	
Diameter of steel brush	d _b [mm] ≥	12	14	16	20	26	30	34	37	
Torque moment	T _{inst} [Nm] ≤	10	20	40	80	120	160	180	200	
Thiskness of fixture	t _{fix,min} [mm] >	0								
Thickness of fixture	t _{fix,max} [mm] <				15	00				
Minimum thickness of member	h _{min} [mm]	l h _{ef} + 30 mm ≥ 100 mm h _{ef} + 2d ₀								
Minimum spacing	s _{min} [mm]	40	50	60	80	100	120	135	150	
Minimum edge distance	c _{min} [mm]	40	50	60	80	100	120	135	150	

Table B2: Installation parameters for rebar

			-	-	-					
Rebar size	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	18	20	24	32	35	40
Effective encharge depth	h _{ef,min} [mm] =	60	60	70	75	80	90	100	112	128
Effective anchorage depth	h _{ef,max} [mm] =	96	120	144	168	192	240	300	336	384
Diameter of steel brush	d _b [mm] ≥	14	16	18	20	22	26	34	37	41,5
Minimum thickness of member	h _{min} [mm]		h _{ef} + 30 mm ≥ 100 mm				h _{ef} + 2d)		
Minimum spacing	s _{min} [mm]	40	50	60	70	80	100	125	140	160
Minimum edge distance	c _{min} [mm]	40	50	60	70	80	100	125	140	160

Injection system Chemfix 500 for concrete


Intended Use Installation parameters Annex B 2

Installation	instructions	
	 Drill with hammer drill a hole into the base material to the size and ember by the selected anchor (Table B1 or Table B2). 	edment depth required
	Attention! Standing water in the bore hole must be removed before c	leaning.
⊡⊸ 2x	2a. Starting from the bottom or back of the bore hole, blow the hole clean w (min. 6 bar) or a hand pump (Annex B 5) a minimum of two times. If the reached an extension shall be used.	
or	The hand-pump can be used for anchor sizes up to bore hole diameter	20 mm.
Bar P	For bore holes larger then 20 mm or deeper 240 mm, compressed air (r used.	nin. 6 bar) <u>must</u> be
	2b. Check brush diameter (Table B4) and attach the brush to a drilling mach screwdriver. Brush the hole with an appropriate sized wire brush $> d_{b,min}$ of two times. If the bore hole ground is not reached with the brush, a brushall be used (Table B4).	(Table B4) a minimum
2x	2c. Finally blow the hole clean again with compressed air or a hand pump (of two times. If the bore hole ground is not reached an extension shall b The hand-pump can be used for anchor sizes up to bore hole diameter For bore holes larger then 20 mm or deeper 240 mm, compressed air (r used.	e used. 20 mm.
or BBar H	After cleaning, the bore hole has to be protected against re-contan appropriate way, until dispensing the mortar in the bore hole. If ne repeated has to be directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.	
Ш	3. Attach a supplied static-mixing nozzle to the cartridge and load the cartr	idge into the correct
+	dispensing tool. For every working interruption longer than the recommended working til as for new cartridges, a new static-mixer shall be used.	me (Table B3) as well
	 Prior to inserting the anchor rod into the filled bore hole, the position of t shall be marked on the anchor rods. 	he embedment depth
X	 Prior to dispensing into the anchor hole, squeeze out separately a minim and discard non-uniformly mixed adhesive components until the mortar colour. 	
Injection sys	stem Chemfix 500 for concrete	
Intended Lise		Annex B 3

Intended Use Installation instructions AULUEX P

Table B3: Minimum curing time

Base material temperature	Gel time (working time)	Minimum curing time in dry concrete	Minimum curing time in wet concrete
+5°C to +9°C	120 min	50 h	100 h
+10°C to +19°C	90 min	30 h	60 h
+20°C to +29°C	30 min	10 h	20 h
+30°C to +39°C	20 min	6 h	12 h
+40 °C	12 min	4 h	8 h

Injection system Chemfix 500 for concrete

Installation instructions (continuation) Curing time Annex B 4

Table B4: Param	neter clear	ning and se	etting tools		
Anchor	Size (mm)	Nominal drill bit diameter d _o (mm)	Steel Brush d _b (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)	Piston plug
		2		Wille-	C
	M8	10,0	12,0	10,5	
	M10	12,0	14,0	12,5	Not necessary
Threaded	M12	14,0	16,0	14,5	Not necessary
Rod	M16	18,0	20,0	18,5	
	M20	24,0	26,0	24,5	#24
	M24	28,0	30,0	28,5	#28
	M27	32,0	34,0	32,5	#32
	M30	35,0	37,0	35,5	#35
	Ø8	12,0	14,0	12,5	
	Ø10	14,0	16,0	14,5	
	Ø12	16,0	18,0	16,5	Not necessary
Rebar	Ø14	18,0	20,0	18,5	
	Ø16	20,0	22,0	20,5	
MANUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	Ø20	24,0	26,0	24,5	#24
	Ø25	32,0	34,0	32,5	#32
	Ø28	35,0	37,0	35,5	#35
	Ø32	40,0	41,5	38,5	#38

Hand pump (volume 750 ml)

Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d_0): 10 mm to 40 mm

Injection system Chemfix 500 for concrete

Intended Use Cleaning and setting tools Annex B 5

	aracteristic valu							nder t	ensio	n Ioad	ls	
Anchor size threaded r	od			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30	
Steel failure												
Characteristic tension res Steel, property class 4.6	sistance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224	
Characteristic tension res Steel, property class 5.8	sistance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280	
Characteristic tension res Steel, property class 8.8	sistance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449	
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)		N _{Fik,s}	[kN]	26	41	59	110	171	247	230	281	
Combined pull-out and	concrete cone failure											
Characteristic bond resis	tance in non-cracked co	ncrete C20)/25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	15	15	15	14	13	12	12	12	
40°Ċ/24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0	
Temperature range II:	dry and wet concrete	τ _{Rk,ucr}	[N/mm²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5	
60°C/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0	
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5	
72°C/43°C	flooded bore hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	6,0	5,5	5,5	
		C30/37					1,	04				
increasing factors for concrete ψ_{a}		C40/50					1,	08				
-		C50/60					1,	10				
Splitting failure												
		I	h / h _{el} ≥ 2,0	1	,0 h _{et}		/h _{ef} -					
Edge distance		2,0 >	h / h _{ef} > 1,3	4,6 h	n _{et} - 1,8 h	1	,3 -					
	-		h / h _{ef} ≤ 1,3	2,	2,26 h _{et}			1,0·h	. 21	26·h _{ef}	C _{cr,sp}	
Axial distance		S _{cr,sp}	[mm]				2 c	Cor, sp	er _,.	_ ner		
Installation safety factor	(dry and wet concrete)	γ2			1	,2			1	,4		
Installation safety factor	(flooded bore hole)	γ2					1	,4				
Injection system	n Chemfix 500	for con	crete						Δn	nex C	1	
Performances Characteristic values of	of resistance for threa	ded rods ı	under tensic	on loads	in non-c	racked	concrete	,	AIII		1	

Design according to TR 029

Steel failure Characteristic tension re Steel, property class 4.6 Characteristic tension re Steel, property class 5.8 Characteristic tension re Steel, property class 8.8	}									
Steel, property class 4.6 Characteristic tension re Steel, property class 5.8 Characteristic tension re	}									
Characteristic tension re Steel, property class 5.8 Characteristic tension re		$N_{\text{Rk},s} = N_{\text{Rk},s,\text{seis}}$	[kN]	34	63	98	141	184	224	
Characteristic tension re	Characteristic tension resistance, Steel, property class 5.8		[kN]	42	78	122	176	230	280	
	esistance,	N _{Rk,s} = N _{Rk,s,seis}	[kN]	67	125	196	282	368	449	
Characteristic tension resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)		N _{Rk,s} = N _{Rk,s,seis}	[kN]	59	110	171	247	230	281	
Combined pull-out and		•								
Characteristic bond resis	stance in cracked concr	ete C20/25								
		$\tau_{\text{Rk,cr}}$	[N/mm ²]	7,5	6,5	6,0	5,5	5,5	5,5	
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	7,1	6,2	5,7	5,5	5,5	5,5	
Temperature range I:		$\tau_{\text{Rk,seis,C2}}$	[N/mm ²]	2,4	2,2	No Per	No Performance Determined (NP			
40°Ċ/24°C		$\tau_{\text{Rik,cr}}$	[N/mm ²]	7,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	7,1	5,8	4,8	4,5	4,0	4,0	
		$\tau_{\text{Rik},\text{seis},\text{C2}}$	[N/mm ²]	2,4	2,1	No Per	Performance Determined (NPD)			
	,	$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5	
	dry and wet concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	4,3	3,8	3,4	3,5	3,5	3,5	
Temperature range II:		$\tau_{\text{Rk,seis,C2}}$	[N/mm ²]	1,4	1,4	No Per	No Performance Determined (NPD)			
60°C/43°C		τ _{Rik,cr}	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	4,3	3,8	3,4	3,5	3,5	3,5	
		τ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	No Per	formance	Determined	(NPD)	
		τ _{Rk,cr}	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0	
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0	
Temperature range II:		τ _{Rk,seis,C2}	[N/mm ²]	1,3	1,2	No Per	formance	Determined	(NPD)	
60°C/43°C		$\tau_{\text{Rk,cr}}$	[N/mm ²]	4,0	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,9	3,4	3,0	3,0	3,0	3,0	
		$\tau_{\text{Rk},\text{seis},\text{C2}}$	[N/mm²]	1,3	1,2	No Per	formance	Determined	(NPD)	
ncreasing factors for co	ncrete	C30/37				1,0	4			
(only static or quasi-stati Ψc		C40/50				1,0				
		C50/60				1,1				
Installation safety factor	(dry and wet concrete)	γ2		1,	2		1	,4		

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to TR 029 and TR 045

Table C3:Characteristic values of resistance for threaded rods under shear loads in
cracked and non-cracked concrete (Design according to TR 029 and TR
045)

Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	$V_{\text{Rk},s,\text{seis},\text{C1}}$	[kN]	No Perfo	ormance	14	27	42	56	72	88
	$V_{\text{Rk},\text{s},\text{seis},\text{C2}}$	[kN]	Determin	ed (NPD)	13	25	No Per	formance (Determined	i (NPD)
	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	$V_{\text{Rk}, \text{s}, \text{seis}, \text{C1}}$	[kN]	No Perfo	ormance	18	34	53	70	91	111
	$V_{\text{Rk},\text{s},\text{seis},\text{C2}}$	[kN]	Determin	ed (NPD)	17	31	No Per	Determined	i (NPD)	
	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	$V_{\text{Rk}, \text{s}, \text{seis}, \text{C1}}$	[kN]	No Perfo	ormance	30	55	85	111	145	177
	$V_{\text{Rk},s,seis,C2}$	[kN]	Determin	ed (NPD)	27	50	No Per	formance (Determined	I (NPD)
Characteristic shear resistance,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR,	V _{Rk,s,seis,C1}	[kN]		ormance	26	48	75	98	91	111
property class 50 (>M24) and 70 (\leq M24)	V _{Rk,s,seis,G2}	[kN]	Determin	ed (NPD)	24	44	No Per	formance (Determined	l (NPD)
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment,	M ⁰ Rk,s,seis,C1	[Nm]								L
Steel, property class 4.6	M ⁰ _{Rk,s,seis,C2}	[Nm]			No Per	formance [Determined	(NPD)		
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	112
Characteristic bending moment, Steel, property class 5.8	M ⁰ Rk,s,seis,C1	[Nm]							L	
	M ⁰ _{Rk,s,seis,C2}	[Nm]	No Performance Determine				(NPD)			
	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	179
Characteristic bending moment,	M ⁰ Rk,s,seis,C1	[Nm]								L
Steel, property class 8.8	M ⁰ Rk,s,seis,C2	[Nm]			No Per	formance [Determined	ned (NPD)		
o l	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	112
Characteristic bending moment, Stainless steel A4 and HCR,	M ⁰ Rk,s,seis,C1	[Nm]								
property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s,seis,C2}	[Nm]			No Per	formance [Determined	(NPD)		
Concrete pry-out failure		ing in the								
Factor k in equation (5.7) of Technical Report TR 029 for the design of Bonded Anchors						2	,0			
Installation safety factor	γ2					1	,0			
Concrete edge failure	•									
See section 5.2.3.4 of Technical Report TR 0	29 for the desig	n of Bond	led Ancho	ors						
Installation safety factor	γ2					1	,0			
Injection system Chemfix 50	0 for cond	rete								
Performances Characteristic values of resistance for the concrete, Design according to TR 029 ar	eaded rods u		ear loads	in crack	ed and i	non-crac	ked	An	nex C	3

	acteristic valu cracked cond							ensio	n Ioa	ds in		
Anchor size reinforcing b	ar			Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure								•				
Characteristic tension resis	tance	N _{Rk,s}	[kN]					$A_s \ge f_{uk}$				
Combined pull-out and co	oncrete cone failure	I										
Characteristic bond resistar	nce in non-cracked co	ncrete C20/	25									
Temperature range I:	dry and wet concrete	$\tau_{Rk,uor}$	[N/mm ²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{Rk,uor}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{\rm Rk,uor}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°C/43°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$\tau_{Rk,uor}$	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	τ _{Rk,uor}	[N/mm ²]	7,5	7,5	7,5	7,0	7,0	6,0	5,5	5,0	4,5
		C30/37						1,04				
Increasing factors for concr ψ_c	ete	C40/50					1,08					
		C50/60						1,10				
Splitting failure												
		h	/ h _{ef} ≥ 2,0		1,0 h _{et}		h/h _{ef}					
Edge distance	-	2,0 > h	/ h _{et} > 1,3	4,6	h _{et} - 1,8	h	1,3 -		~			
	-	h	n / h _{et} ≤ 1,3	2	2,26 h _{ef}		+		1,0 [.] h _{ef}	2,26	,	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]					2 c _{or,sp}	1,0 Hef	2,20	Tef	
Installation safety factor (dr	y and wet concrete)	γ2				1,2				1	,4	
Installation safety factor (flo	oded bore hole)	γ2						1,4				
Injection system	Chemfix 500	for cond	crete							Δnn	ex C	4
Performances Characteristic values of r Design according to TR (under ten	sion loads	in non-	cracked	d concr	ete					-

	racteristic val ked concrete							oads i	n	
Anchor size reinforcing	bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure										
Characteristic tension resi	istance	N _{Rk,s} = N _{Rk,s,sels,G1}	[kN]				$A_{s} x f_{uk}$			
Combined pull-out and o	concrete cone failure									
Characteristic bond resist	ance in cracked concre	ete C20/25								
	dry and wet	τ _{Rk,or}	[N/mm ²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5
Temperature range I:	concrete	[N/mm ²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5	
40°C/24°C	flooded bore hole	[N/mm ²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0	
	nooded bore noie	τ _{Rk,seis,C1}	[N/mm²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0
	dry and wet	τ _{Rk,or}	[N/mm ²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5
Temperature range II:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5
60°C/43°C	flooded bore hole	τ _{Rk,or}	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0
	nooded bore noie	τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0
	dry and wet	$\tau_{\text{Rk,or}}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
Temperature range III:	concrete	τ _{Rk,seis,C1}	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
72°C/43°C	flooded bore hole	τ _{Rk,or}	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0
	nooded bore noie	τ _{Rk,seis,C1}	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0
Increasing feature for our		C30/37					1,04		-	
Increasing factors for cone (only static or quasi-static Ψ_c	actions)	C40/50					1,08			
Ψ0		C50/60					1,10			
Installation safety factor (γ2			1,2			1	,4	
Installation safety factor (f	looded bore hole)	γ2					1,4			

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to TR 029 and TR 045

Table C6: Characteristic and non-cracke											d
Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	V _{Rk,s}	[kN]				0,9	50 x A _s x	f _{uk}			
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	Perfor	lo mance mined PD)			0,	44 x A _s x	f _{uk}		
Steel failure with lever arm				1							
Characteristic bending moment	$M^0_{\ \text{Rk},s}$	[Nm]				1.	.2 ∙W _{el} • f	luk			
M ⁰ _{Rk,s,seis,C1} [Nm] No Performance Det									NPD)		
Concrete pry-out failure											
Factor k in equation (5.7) of Technical Repo TR 029 for the design of bonded anchors											
Installation safety factor	γ2						1,0				
Concrete edge failure											
See section 5.2.3.4 of Technical Report TR	029 for the de	esign of I	Bonded A	Anchors							
Installation safety factor	γ2						1,0				
Injection system Chemfix 50 Performances Characteristic values of resistance for	ebar under :			racked	and non	-cracke	d		Anr	nex C	6
concrete, Design according to TR 029 a	and TR 045										

Anchor size threaded rod	l			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure											
Characteristic tension resis Steel, property class 4.6	tance,	N _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic tension resis Steel, property class 5.8	tance,	N _{Rk,s}	[kN]	18	29	42	78	122	176	230	280
Characteristic tension resis Steel, property class 8.8	tance,	N _{Rk,s}	[kN]	29	46	67	125	196	282	368	449
Characteristic tension resis Stainless steel A4 and HCF property class 50 (>M24) a	٦,	N _{Rk,s}	[kN]	26	41	59	110	171	247	230	281
Combined pull-out and co	oncrete failure										
Characteristic bond resista	nce in non-cracked concrete	e C20/25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	15	15	15	14	13	12	12	12
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	15	14	13	10	9,5	8,5	7,5	7,0
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	9,5	9,5	9,0	8,5	8,0	7,5	7,5	7,5
60°C/43°C	flooded bore hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	9,5	9,5	9,0	8,5	7,5	7,0	6,5	6,0
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	8,5	8,5	8,0	7,5	7,0	7,0	6,5	6,5
72°C/43°C	flooded bore hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	8,5 8,5 8,0 7,5 7,0 6,0 5,5				5,5			
ncreasing factors for conc	rete	C30/37					,	04			
Ψc		C40/50 C50/60					,	08 10			
Factor according to CEN/T	S 1992-4-5 Section 6.2.2.3	k ₈	[-]	1,10							
Concrete cone failure											
Factor according to CEN/T	S 1992-4-5 Section 6.2.3.1	k _{uor}	[-]				1(),1			
Edge distance		C _{cr,N}	[mm]				1,5	h _{et}			
Axial distance		S _{cr,N}	[mm]				3,0	h _{et}			
Splitting failure											
			h / h _{et} ≥ 2,0	1,	0 h _{et}		1/h _{ef} 2,0 -				
Edge distance		2,0 >	h / h _{et} > 1,3	4,6 h _e	_# - 1,8 h		1,3				
			h / h _{et} ≤ 1,3	2,2	26 h _{ef}		ļ	1,0 h _e	f 2,26	c.	r,sp
Axial distance		S _{cr,sp}	[mm]				2 c	cr,sp	, 2,20	et .	
nstallation safety factor (dr	y and wet concrete)	γinst			1	,2			1	,4	
nstallation safety factor (flo	oded bore hole)	γinst					1	,4			
Installation safety factor (flo	boded bore hole)	Yinst					1	,4			

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in non-cracked concrete Design according to CEN/TS 1992-4

Anchor size threaded rod				M 12	M 16	M 20	M24	M27	M30
Steel failure									
Characteristic tension resist Steel, property class 4.6	ance,	$N_{\mathrm{Rk},\mathrm{s}} = N_{\mathrm{Rk},\mathrm{seis}}$	[kN]	34	63	98	141	184	224
Characteristic tension resist	ance.	N _{Rk.s} = N _{Rk.seis}	[kN]	42	78	122	176	230	280
Steel, property class 5.8 Characteristic tension resist	ance,	N _{Rk,s} = N _{Rk,seis}	[kN]	67	125	196	282	368	449
Steel, property class 8.8 Characteristic tension resist Stainless steel A4 and HCR									
property class 50 (>M24) ar	-	$N_{\text{Rk},\text{s}} = N_{\text{Rk},\text{seis}}$	[kN]	59	110	171	247	230	281
Combined pull-out and co	ncrete failure								
Characteristic bond resistan	ice in cracked concrete Ca	20/25							
		$\tau_{\text{Rk}, \text{cr}}$	[N/mm ²]	7,5	6,5	6,0	5,5	5,5	5,5
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ²]	7,1	6,2	5,7	5,5	5,5	5,5
Femperature range I:		τ _{Rk,seis,C2}	[N/mm ²]	2,4	2,2	No Per	formance [Determine	d (NPD
10°C/24°C		τ _{Rk,cr}	[N/mm ²]	7,5	6,0	5,0	4,5	4,0	4,0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm ²]	7,1	5,8	4,8	4,5	4,0	4,0
		τ _{Rk,seis,C2}	[N/mm ²]	2,4	2,1	No Per	ormance [Determine	d (NPD
		τ _{Rk.cr}	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
mperature range II:	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ²]	4,3	3,8	3.4	3.5	3.5	3.5
		τ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	No Per	formance [Determine	d (NPD
60°C/43°C		τ _{Rk,cr}	[N/mm ²]	4,5	4,0	3,5	3,5	3,5	3,5
	dry and wet concrete	τ _{Rk,seis,C1}	[N/mm ²]	4,3	3,8	3,4	3,5	3,5	3.5
		τ _{Rk,seis,C2}	[N/mm ²]	1,4	1,4	No Per	ormance [Determine	d (NPD
		τ _{Rk.cr}	[N/mm ²]	4.0	3,5	3.0	3.0	3.0	3.0
	dry and wet concrete	TRK.seis.C1	[N/mm ²]	3,9	3,4	3.0	3.0	3.0	3.0
Temperature range III:	.,	τ _{Rk,seis,C2}	[N/mm ²]	1,3	1,2	- 1 -	formance [- 1 -	- / -
72°C/43°C		T _{Rk.cr}	[N/mm ²]	4,0	3,5	3.0	3,0	3,0	3.0
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm ²]	3,9	3,4	3.0	3,0	3.0	3.0
		τ _{Rk,seis,C2}	[N/mm ²]	1,3	1,2	- , -	formance [.,	-,-
		C30/37	F	.,.	- ,		04		- (
ncreasing factors for concre only static or quasi-static ac		C40/50					08		
Ψc		C50/60				,	10		
Factor according to CEN/TS 6.2.2.3	6 1992-4-5 Section	k ₈	[-]				,2		
Concrete cone failure									
Factor according to CEN/TS 6.2.3.1	6 1992-4-5 Section	k _{cr}	[-]			7	,2		
Edge distance		C _{cr,N}	[mm]	1,5 h _{et}					
Axial distance		S _{cr,N}	[mm]			3,0	h _{el}		
Installation safety factor (dry	and wet concrete)	Yinst		1	,2		1	4	
Installation safety factor (flo	^		1,2 1,4						

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for threaded rods under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Table C9: Characteristic valu cracked and non-o (Design according	cracked c	oncre	te			ds un	der sl	near Io	ads ir	ו
Anchor size threaded rod			M 8	M 10	M 12	M 16	M 20	M24	M 27	M 30
Steel failure without lever arm										
	V _{Rk,s}	[kN]	7	12	17	31	49	71	92	112
Characteristic shear resistance, Steel, property class 4.6	V _{Rk,s,seis,C1}	[kN]	No Perfe	ormance	14	27	42	56	72	88
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	13	25	No Per	formance [Determined	(NPD)
	V _{Rk,s}	[kN]	9	15	21	39	61	88	115	140
Characteristic shear resistance, Steel, property class 5.8	V _{Rk,s,seis,C1}	[kN]	No Perfe	ormance	18	34	53	70	91	111
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	17	31	No Per	formance [Determined	I (NPD)
	V _{Rk,s}	[kN]	15	23	34	63	98	141	184	224
Characteristic shear resistance, Steel, property class 8.8	V _{Rk,s,seis,C1}	[kN]		ormance	30	55	85	111	145	177
	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	27	50	No Per	formance [Determined	(NPD)
Characteristic shear resistance,	V _{Rk,s}	[kN]	13	20	30	55	86	124	115	140
Stainless steel A4 and HCR,	V _{Rk,s,seis,C1}	[kN]	-	ormance	26	48	75	98	91	111
property class 50 (>M24) and 70 (\leq M24)	V _{Rk,s,seis,C2}	[kN]	Determin	ed (NPD)	24	44	No Per	formance [Determined	(NPD)
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k2					0,	8			
Steel failure with lever arm										
	M ⁰ _{Rk,s}	[Nm]	15	30	52	133	260	449	666	900
Characteristic bending moment, Steel, property class 4.6	M ⁰ Rk,s,seis,C1	[Nm]	No Performance Determined (NPD)							
	M ⁰ Rk,s,seis,C2	[Nm]								
	M ⁰ _{Rk,s}	[Nm]	19	37	65	166	324	560	833	1123
Characteristic bending moment, Steel, property class 5.8	$M^0_{\text{Rk},s,seis,C1}$	[Nm]			No Perfo	ormance [Determine	ed (NPD)		
	$M^0_{\text{Rk},s,seis,C2}$	[Nm]								
Characteristic banding moment	M ⁰ _{Rk,s}	[Nm]	30	60	105	266	519	896	1333	1797
Characteristic bending moment, Steel, property class 8.8	M ⁰ _{Rk,s,seis,C1}	[Nm]			No Perfo	ormance [Determine	ed (NPD)		
	M ⁰ _{Fik,s,seis,C2}	[Nm]								
Characteristic bending moment,	M ⁰ _{Rk,s}	[Nm]	26	52	92	232	454	784	832	1125
Stainless steel A4 and HCR, property class 50 (>M24) and 70 (\leq M24)	M ⁰ _{Rk,s,seis,C1}	[Nm]	-		No Perfo	ormance [Determine	ed (NPD)		
	M ⁰ _{Fik,s,seis,C2}	[Nm]						. ,		
Concrete pry-out failure										
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃					2,	0			
Installation safety factor	γinst					1,	0			
Concrete edge failure										
Effective length of anchor	h	[mm]				l _t = min(h	_{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation safety factor	γinst					1,	0			
Injection system Chemfix 500	for conc	rete								
Performances								An	nex C	9

Characteristic values of resistance for threaded rods under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

Table C10: Char cracl	acteristic value ked concrete (D								n Ioa	ds in	non	
Anchor size reinforcing ba	ar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure												
Characteristic tension resist	tance	N _{Rk,s}	[kN]					$A_{s} \mathrel{\times} f_{uk}$				
Combined pull-out and co	oncrete failure											
Characteristic bond resistan	nce in non-cracked concr	ete C20/2	25									
Temperature range I:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	14	14	13	13	12	12	11	11	11
40°C/24°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	14	13	11	10	9,5	8,5	7,5	7,0	6,0
Temperature range II:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	8,5	8,5	8,0	8,0	7,5	7,0	7,0	6,5	6,5
60°Ċ/43°C	flooded bore hole	$\tau_{\text{Rk,ucr}}$	[N/mm²]	8,5	8,5	8,0	8,0	7,5	7,0	6,0	5,5	5,0
Temperature range III:	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm²]	7,5	7,5	7,5	7,0	7,0	6,5	6,0	6,0	6,0
72°C/43°C	flooded bore hole	$\tau_{\text{Rk},\text{ucr}}$	[N/mm²]	7,5 7,5 7,5 7,0 7,0			6,0	5,5	5,0	4,5		
lange size forton for some		C30/37		1,04					-			
Increasing factors for concre ψ_c	ete	C40/50		1,08								
Faster assemble to		C50/60		1,10								
Factor according to CEN/TS 1992-4-5 Section 6	6.2.2.3	k ₈	[-]					10,1				
Concrete cone failure												
Factor according to CEN/TS 1992-4-5 Section 6	5.2.3.1	k _{uar}	Ð		10,1							
Edge distance		C _{cr,N}	[mm]					1,5 h _{et}				
Axial distance		$S_{\text{cr},N}$	[mm]	3,0 h _{et}								
Splitting failure							. /.					
		h	/ h _{ef} ≥ 2,0		1,0 h _{ef}		h/h _{ef}					
Edge distance		2,0 > h	/ h _{et} > 1,3	4,6	h _{ef} - 1,8	h	1,3 -					
		h	/ h _{et} ≤ 1,3	2	2,26 h _{el}		+		1,0 ⋅h _{ef}	2,26	,	C _{cr,sp}
Axial distance		S _{cr,sp}	[mm]					2 c _{cr,sp}	i to lief	2,20	''ef	
Installation safety factor (dry	y and wet concrete)	γinst				1,2				1	,4	
Installation safety factor (flo	oded bore hole)	γinst						1,4				1
Injection system	Chemfix 500 fo	r conc	rete							A :		
Performances										Anne	ex C 1	U

Characteristic values of resistance for rebar under tension loads in non-cracked concrete

Design according to CEN/TS 1992-4

	naracteristic val acked concrete										
Anchor size reinforci	ng bar			Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32	
Steel failure											
Characteristic tension r	resistance	N _{Rk,s} = N _{Rk,s,seis,C1}	[kN]				A_sxf_{uk}				
Combined pull-out an	d concrete failure										
Characteristic bond res	istance in cracked concre	ete C20/25									
	dry and wet	$\tau_{\text{Rk}, cr}$	[N/mm ²]	7,5	7,0	6,5	6,0	5,5	5,5	5,5	
Temperature range I:	concrete	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	6,9	6,4	6,2	5,7	5,5	5,5	5,5	
40°C/24°C	flooded here hele	$\tau_{\text{Rk,cr}}$	[N/mm²]	7,5	6,5	6,0	5,0	4,5	4,0	4,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	6,9	6,0	5,7	4,8	4,5	4,0	4,0	
	dry and wet	$\tau_{\text{Rk,cr}}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,5	
Temperature range II:	concrete	τ _{Rk,seis,C1}	[N/mm²]	4,1	3,7	3,8	3,3	3,5	3,5	3,5	
60°C/43°C		$\tau_{\rm Rk,cr}$	[N/mm²]	4,5	4,0	4,0	3,5	3,5	3,5	3,0	
	flooded bore hole	τ _{Rk,seis,C1}	[N/mm ²]	4,1	3,7	3,8	3,3	3,5	3,5	3,0	
	dry and wet	τ _{Rk,cr}	[N/mm ²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
Temperature range III:	concrete	$\tau_{\text{Fik},\text{sels},\text{G1}}$	[N/mm²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
72°Ċ/43°C	concrete	$\tau_{\text{Rk,cr}}$	[N/mm²]	4,0	3,5	3,5	3,0	3,0	3,0	3,0	
	flooded bore hole	$\tau_{\text{Rk,seis,C1}}$	[N/mm ²]	3,7	3,2	3,3	2,9	3,0	3,0	3,0	
Increasing factors for c	oncrete	C30/37		1,04							
(only static or quasi-sta		C40/50					1,08				
ψ_{c}		C50/60					1,10				
Factor according to CEN/TS 1992-4-5 Sect	ion 6.2.2.3	k ₈	[-]				7,2				
Concrete cone failure	1										
Factor according to CEN/TS 1992-4-5 Sect	ion 6.2.3.1	k _{cr}	[-]				7,2				
Edge distance		C _{cr,N}	[mm]				1,5 h _{ef}				
Axial distance		S _{cr,N}	[mm]				3,0 h _{ef}				
Installation safety facto	r (dry and wet concrete)	γinst			1,2			1	,4		
Installation safety facto	r (flooded bore hole)	γ_{inst}					1,4				

Injection system Chemfix 500 for concrete

Performances Characteristic values of resistance for rebar under tension loads in cracked concrete Design according to CEN/TS 1992-4 and TR 045

Anchor size reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Steel failure without lever arm											
	V _{Rk,s}	[kN]				0,5	i0 x A _s x	f _{uk}			
Characteristic shear resistance	V _{Rk,s,seis,C1}	[kN]	Perfor Deter	lo mance mined PD)			0,4	l4 x A _s x	t f _{uk}		
Ductility factor according to CEN/TS 1992-4-5 Section 6.3.2.1	k ₂						0,8				
Steel failure with lever arm											
	M ⁰ _{Rk,s}	[Nm]	1.2 ·W _{el} · f _{uk}								
Characteristic bending moment	M ⁰ _{Rk,s,seis,C1}	[Nm]	No Performance Determined (NPD)								
Concrete pry-out failure	-	-	I								
Factor in equation (27) of CEN/TS 1992-4-5 Section 6.3.3	k ₃						2,0				
Installation safety factor	γinst						1,0				
Concrete edge failure											
Effective length of anchor	J _f	[mm]				l _t = m	iin(h _{ef} ; 8	d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	14	16	20	24	27	30
Installation safety factor	γinst						1,0	-			

Injection system Chemfix 500 for concrete

Performances

Characteristic values of resistance for rebar under shear loads in cracked and non-cracked concrete, Design according to CEN/TS 1992-4 and TR 045

Anchor size thre	eaded rod		M 8	M 10	M 12	M 16	M 20	M24	M 27	М 30	
Non-cracked co	ncrete C20/25	under static and o	uasi-stat	ic actio	n						
1000/0100	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,020	0,024	0,029	0,032	0,03	
40°C/24°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]	0,044	0,052	0,061	0,079	0,096	0,114	0,127	0,14	
0000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04	
60°C/43°C	$\delta_{N\infty}-factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16	
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,023	0,028	0,033	0,037	0,04	
72°C/43°C	$\delta_{N\infty}-factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,091	0,111	0,131	0,146	0,16	
Cracked concre	te C20/25 und	er static, quasi-sta	tic and se	eismic (C1 actio	n					
	δ_{N0} – factor	[mm/(N/mm ²)]			0,032	0,037	0,042	0,048	0,053	0,05	
40°C/24°C	$\delta_{N\infty}$ – factor	[mm/(N/mm ²)]			0,21	0,21	0,21	0,21	0,21	0,2	
0000/1000	δ_{N0} – factor	[mm/(N/mm ²)]		ormance	0,037	0,043	0,049	0,055	0,061	0,06	
60°C/43°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,2	
7000//0000	δ_{N0} – factor	[mm/(N/mm²)]			0,037	0,043	0,049	0,055	0,061	0,06	
72°C/43°C	$\delta_{N_{\infty}}$ – factor	[mm/(N/mm ²)]			0,24	0,24	0,24	0,24	0,24	0,24	
Cracked concre	te C20/25 und	er seismic C2 acti	on								
1000/0400	$\delta_{\text{N},\text{seis}(\text{DLS})}$	[mm/(N/mm²)]			0,03	0,05					
40°C/24°C	$\delta_{\text{N},\text{seis}(\text{ULS})}$	[mm/(N/mm ²)]			0,06	0,09					
0000/4000	$\delta_{\text{N},\text{seis}(\text{DLS})}$	[mm/(N/mm ²)]		ormance	0,03	0,05			ce Determined (NF		
60°C/43°C	$\delta_{\text{N},\text{seis}(\text{ULS})}$	[mm/(N/mm ²)]		mined PD)	0,06	0,09	No Peri	ormance i			
70%0/40%0	$\delta_{\text{N},\text{seis}(\text{DLS})}$	[mm/(N/mm ²)]			0,03	0,05					
72°C/43°C	$\delta_{N,seis(ULS)}$	[mm/(N/mm ²)]			0,06	0.00	1				
¹⁾ Calculation of t					0,00	0,09					
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{fact} \\ \delta_{N_m} &= \delta_{N_m} - \text{fact} \\ \textbf{Table C14: } \textbf{E} \end{split}$	he displacement or · τ; or · τ: Displaceme t				ed roc	1)	M 20	M24	M 27	M 3	
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{fact} \\ \delta_{N_m} &= \delta_{N_m} - \text{fact} \\ \textbf{Table C14: } \\ \textbf{Anchor size three} \end{split}$	he displacement or · τ; or · τ; Displacement eaded rod	nts under shear	M 8	M 10	ed roc M 12	I) M 16	M 20	M24	M 27	M 3	
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{fact} \\ \delta_{N_m} &= \delta_{N_m} - \text{fact} \\ \textbf{Table C14: } \\ \textbf{Anchor size three} \end{split}$	he displacement or · τ; or · τ;)isplacemen aded rod d cracked con	nts under shear	M 8 er static, q	M 10 uasi-sta	ed roc M 12 atic and	I) M 16 I seism	ic C1 ac	tion		M 3	
$\delta_{N0} = \delta_{N0} - fact$ $\delta_{N,} = \delta_{N,} - fact$ Table C14: D Anchor size thre Non-cracked and	he displacement or · τ; or · τ; Displacemen aded rod d cracked con	nts under shear crete C20/25 unde	M 8 er static, q 0,06	M 10 uasi-sta 0,06	ed roc M 12 atic and 0,05	M 16 I seism 0,04	i c C1 ac 0,04	tion 0,03	0,03	0,0	
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{fact} \\ \delta_{N,\infty} &= \delta_{N,\infty} - \text{fact} \\ \textbf{Table C14: } \textbf{E} \\ \textbf{Anchor size three} \\ \textbf{Non-cracked and} \\ \textbf{All temperatures} \end{split}$	he displacement or $\cdot \tau$; or $\cdot \tau$; Displacement eaded rod d cracked cont $\delta_{V_{\infty}}$ – factor $\delta_{V_{\infty}}$ – factor	crete C20/25 unde [mm/(kN)] [mm/(kN)]	M 8 er static, q 0,06 0,09	M 10 uasi-sta	ed roc M 12 atic and	I) M 16 I seism	ic C1 ac	tion		0,0	
$\begin{split} \delta_{N0} &= \delta_{N0} - \text{fact} \\ \delta_{N,\infty} &= \delta_{N,\infty} - \text{fact} \\ \textbf{Table C14: } \textbf{E} \\ \textbf{Anchor size three} \\ \textbf{Non-cracked and} \\ \textbf{All temperatures} \end{split}$	he displacement or τ ; or τ ; Displacement eaded rod d cracked cont δ_{V_0} – factor $\delta_{V_{\infty}}$ – factor te C20/25 und	crete C20/25 unde [mm/(kN)] [mm/(kN)] er seismic C2 action	M 8 er static, q 0,06 0,09 on	M 10 uasi-sta 0,06	ed roc M 12 atic and 0,05 0,08	M 16 Seism 0,04 0,06	i c C1 ac 0,04	tion 0,03	0,03		
$\delta_{N0} = \delta_{N0} - fact$ $\delta_{N,m} = \delta_{N,m} - fact$ Table C14: D Anchor size three Non-cracked and All temperatures Cracked concret	he displacement or $\cdot \tau$; or $\cdot \tau$; Displacement aded rod d cracked con δ_{V_0} – factor $\delta_{V_{\infty}}$ – factor ise C20/25 und $\delta_{V,seis(DLS)}$	crete C20/25 unde [mm/(kN)] [mm/(kN)] er seismic C2 action [mm/kN]	M 8 er static, q 0,06 0,09 on No Perfe	M 10 uasi-sta 0,06 0,08	ed roc M 12 atic and 0,05	M 16 I seism 0,04	ic C1 ac 0,04 0,06	0,03 0,05	0,03	0,0; 0,0;	
$\delta_{N0} = \delta_{N0} - fact$ $\delta_{N,m} = \delta_{N,m} - fact$ Table C14: E Anchor size three Non-cracked and All temperatures	he displacement or $\cdot \tau$; or $\cdot \tau$; Displacemen eaded rod d cracked con $\delta_{V_0} - factor$ $\delta_{V_{\infty}} - factor$ ie C20/25 und $\delta_{V,seis(DLS)}$ $\delta_{V,seis(ULS)}$ he displacement or $\cdot V$;	crete C20/25 unde [mm/(kN)] [mm/(kN)] er seismic C2 actio [mm/kN] [mm/kN]	M 8 er static, q 0,06 0,09 on No Perfe	M 10 uasi-sta 0,06 0,08	ed roc M 12 atic and 0,05 0,08 0,2	 M 16 I seism 0,04 0,06 0,1 	ic C1 ac 0,04 0,06	0,03 0,05	0,03	0,0	

Anchor size	reinforcing b	bar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
Non-cracked	d concrete C2	20/25 under sta	tic and	quasi-s	tatic act	ion					
40°C/24°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,011	0,013	0,015	0,018	0,020	0,024	0,030	0,033	0,037
40°C/24°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,044	0,052	0,061	0,070	0,079	0,096	0,118	0,132	0,149
60°C/43°C	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
60°C/43°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]	0,013	0,015	0,018	0,020	0,023	0,028	0,034	0,038	0,043
72°C/43°C	$\delta_{N\infty}-factor$	[mm/(N/mm ²)]	0,050	0,060	0,070	0,081	0,091	0,111	0,136	0,151	0,172
Cracked cor	ncrete C20/25	under static,	quasi-st	atic and	l seismi	c C1 act	tion				
4000/0400	δ_{N0} – factor	[mm/(N/mm ²)]			0,032	0,035	0,037	0,042	0,049	0,055	0,061
40°C/24°C	$\delta_{N\infty}-factor$	[mm/(N/mm ²)]			0,21	0,21	0,21	0,21	0,21	0,21	0,21
C00C/400C	δ_{N0} – factor	[mm/(N/mm ²)]	No Perfe		0,037	0,040	0,043	0,049	0,056	0,063	0,070
60°C/43°C	$\delta_{N_\infty} - factor$	[mm/(N/mm ²)]		mined PD)	0,24	0,24	0,24	0,24	0,24	0,24	0,24
7000/4000	δ_{N0} – factor	[mm/(N/mm ²)]			0,037	0,040	0,043	0,049	0,056	0,063	0,070
$\begin{bmatrix} 72^{\circ}C/43^{\circ}C & \\ \delta_{N_{\infty}} - factor & [mm/(N/mm^2)] \end{bmatrix}$										0,24	

 $\delta_{\text{N0}} = \delta_{\text{N0}} - \text{factor} \cdot \tau;$

 $\delta_{N_{\infty}}=\delta_{N_{\infty}}-factor\,\cdot\,\tau;$

Table C16: Displacement under shear load¹⁾ (rebar)

					(<u>, </u>					
Anchor size r	einforcing b	bar	Ø 8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 25	Ø 28	Ø 32
For concrete	C20/25 und	er static, quas	i-static	and seis	smic C1	action					
All	δ_{V0} – factor	[mm/(kN)]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03
temperatures	$\delta_{V_\infty} factor$	[mm/(kN)]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,04	0,04
$\begin{array}{l} \delta_{V0}=\delta_{V0}-f\\ \delta_{V\infty}=\delta_{V\infty}-f\end{array}$	actor · V;										
Injection sy	stem Che	mtix 500 fo	r conc	rete							
	Application with reinforcing bar										: 14

Displacements