

European Technical Assessment

ETA 11/0103 of 20/09/2018

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011	Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)
Trade name of the construction product	Anchor CLOVERFIX MTH Anchor CLOVERFIX MTH-A2 Anchor CLOVERFIX MTH-A4
Product family to which the construction product belongs	Torque controlled expansion anchor made of galvanised steel or stainless steel of sizes M6, M8, M10, M12, M14, M16 and M20 for use in non-cracked concrete.
Manufacturer	Técnicas Expansivas S.L. Rio Escalón 3 26006 Logroño (La Rioja) Spain. website: <u>www.cloverfix.es</u>
Manufacturing plants	Cloverfix plant 1 Cloverfix plant 2
This European Technical Assessment contains	13 pages including 4 annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	European Technical Assessment EAD 330232-00- 0601 "Mechanical Fasteners for use in concrete", ed. October 2016
This version replaces	ETA 11/0103 issued on 01/10/2014

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The Cloverfix MTH in the range of M6, M8, M10, M12, M14, M16 and M20 is an anchor made of galvanised steel. The Cloverfix MTH-A2 and MTH-A4 in the range of M6, M8, M10, M12, M16 and M20 are anchors made of stainless steel of grades A2 and A4 respectively. The anchor is installed into a predrilled cylindrical hole and anchored by torque-controlled expansion. The anchorage is characterised by friction between expansion clip and concrete.

Product and product description is given in annex A.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
MTH product performance for static or quasi static actions	See annex C
MTH-A2 and MTH-A4 product performance for static or quasi static actions	See annex D

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for class A1
Resistance to fire	No performance determined

3.3 Hygiene, health and the environment (BWR 3)

This requirement is not relevant for the anchors.

3.4 Safety in use (BWR 4)

The essential characteristics regarding safety in use are included under the basic works requirement Mechanical Resistance and Stability.

3.5 Protection against noise (BWR 5)

This requirement is not relevant for the anchors.

3.6 Energy economy and heat retention (BWR 6)

This requirement is not relevant for the anchors.

3.7 Sustainable use of natural resources (BWR 7)

No performance assessed.

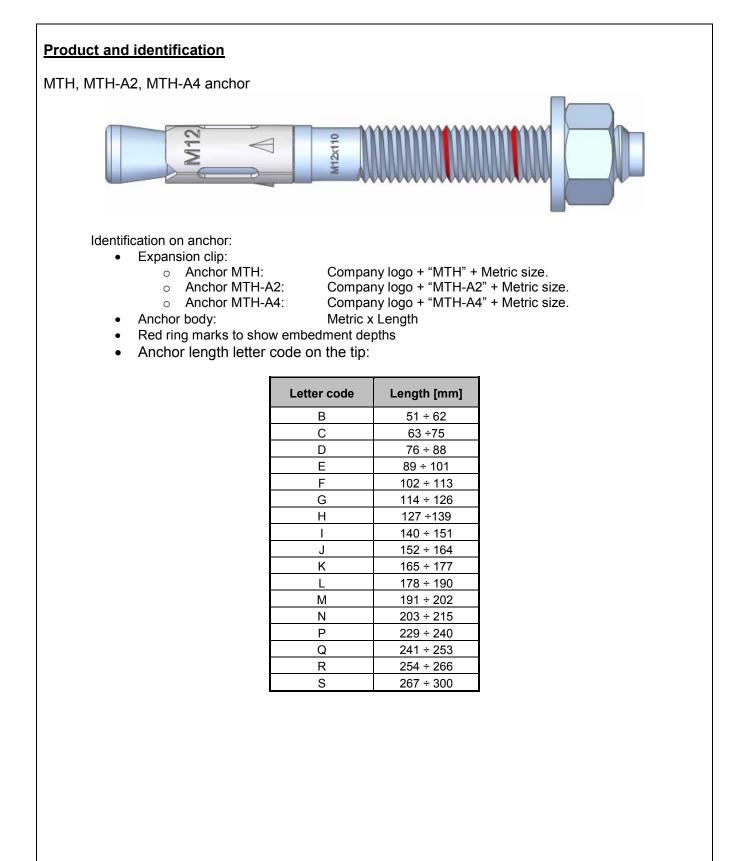
4. Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V of Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

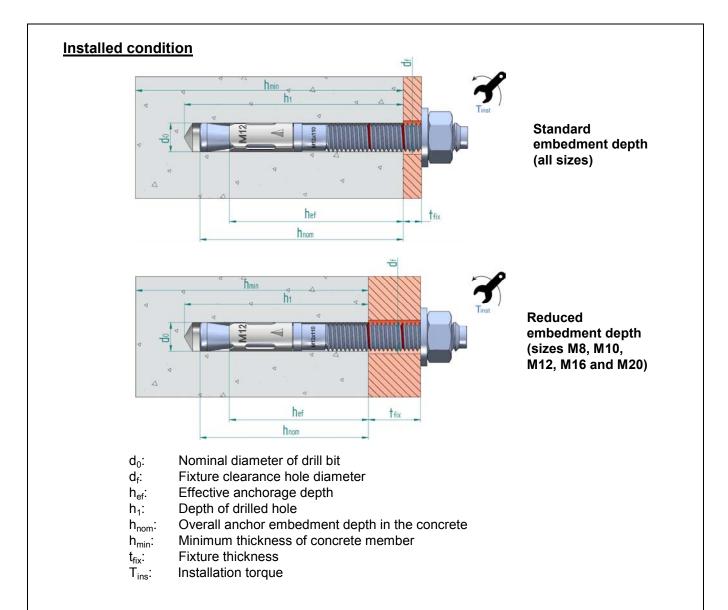
The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.


Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 www.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 20th of September 2018

> Angel Castillo Talavera Director



MTH, MTH-A2, MTH-A4 anchor

Product description

Identification

Annex A1

Table A1: Materials

ltem	Designation	Material for MTH	Material for MTH-A2	Material for MTH-A4
1	Anchor Body	Carbon steel galvanised ≥ 5 µm ISO 4042 A2, cold forged	Stainless steel, grade A2	Stainless steel, grade A4
2	Washer	DIN 125, DIN 9021 or DIN 440 galvanised ≥ 5 µm ISO 4042 A2	DIN 125, DIN 9021 or DIN 440, stainless steel grade A2	DIN 125, DIN 9021 or DIN 440, stainless steel grade A4
3	Nut	DIN 934 class 6 galvanised ≥ 5 µm ISO 4042 A2, class 6	DIN 934, stainless steel grade A2	DIN 934, stainless steel grade A4
4	Expansion clip	Carbon steel galvanised ≥ 5 µm ISO 4042 A2	Stainless steel, grade A2	Stainless steel, grade A4

MTH, MTH-A2, MTH-A4 anchor

Product description

Installed condition and materials

Intended use

Anchorages subjected to:

• Static or quasi static loads: all sizes and embedment depths

Base materials:

- Reinforced and unreinforced concrete according to EN 206-1
- Strength classes C20/25 to C50/60 according to EN 206-1
- Uncracked concrete

Use conditions (environmental conditions):

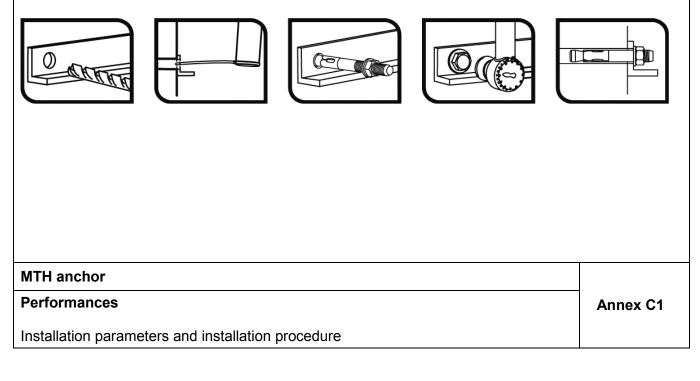
- The anchor shall be used in dry internal conditions: all anchor types
- Structural subjected to external atmospheric exposure (including industrial and marine environment) and to permanent internal conditions with no particular aggressive conditions exists: screw types made of stainless steel with marking A4. Such particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be attached. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.)
- Anchorages under static or quasi-static loads are designed for design Method A in accordance with:
 - ETAG 001, Annex C, edition August 2010 or
 - EN 1992-4:2018
- Size M8 in reduced embedment depth is restricted to anchoring of structural components which are statically indeterminate.

Installation:

- Hammer drilling only.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.


Intended use

Specifications

Table C1: Installation parameters for MTH anchor

MTH:	GALVANISED ANCHOR				Ре	rformar	nces			
Insta	llation parameters		M6	M8	M10	M12	M14	M16	M20	
d ₀	Nominal diameter of drill bit:	[mm]	6	8	10	12	14	16	20	
d _f	Fixture clearance hole diameter:	[mm]	7	9	12	14	16	18	22	
T _{inst}	Nominal installation torque:	[Nm]	7	20	35	60	90	120	240	
St	Standard embedment depth									
L _{min}	Minimum length of the bolt:	[mm]	60	75	85	100	115	125	160	
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	110	130	150	168	206	
h ₁	Depth of drilled hole ≥	[mm]	55	65	75	85	100	110	135	
h _{nom}	Overall anchor embed depth in concrete:	[mm]	49.5	59.5	66.5	77	91	103.5	125	
h _{ef,std}	Effective anchorage depth:	[mm]	40	48	55	65	75	84	103	
t _{fix}	Thickness of fixture for DIN 125 washer ≤	[mm]	L-58	L-70	L-80	L-92	L-108	L-122	L-147	
t _{fix}	Thickness of fixture for DIN 9021 or DIN 440 washer ≤	[mm]	L-58	L-71	L-80	L-94	L-108	L-124	L-149	
S _{min}	Minimum allowable spacing:	[mm]	35	40	50	70	80	90	135	
C _{min}	Minimum allowable distance:	[mm]	35	40	50	70	80	90	135	
Re	educed embedment depth					-				
L _{min}	Minimum length of the bolt:	[mm]		60	70	80		110	130	
h _{min}	Minimum thickness of concrete member:	[mm]		100	100	100		130	150	
h ₁	Depth of drilled hole:	[mm]		50	60	70		90	107	
h _{nom}	Overall anchor embed depth in concrete:	[mm]		46.5	53.5	62		84.5	97	
h _{ef,red}	Effective anchorage depth:	[mm]		35	42	50		65	75	
t _{fix}	Thickness of fixture for DIN 125 washer ≤	[mm]		L-57	L-67	L-77		L-103	L-121	
t _{fix}	Thickness of fixture for DIN 9021 or DIN 440 washer ≤	[mm]		L-58	L-67	L-79		L-105	L-123	
S _{min}	Minimum allowable spacing:	[mm]		40	50	70		90	135	
C _{min}	Minimum allowable distance:	[mm]		40	50	70		90	135	

Installation process

Table C2: Characteristic resistance values to tension loads of design method A according to ETAG 001, Annex C or EN 1992-4 for MTH anchor

					Pe	erformar	nces		
ИТН: (GALVANISED ANCHOR		M6	M8	M10	M12	M14	M16	M20
TEEL	. FAILURE								
I _{Rk.s}	Characteristic resistance:	[kN]	7.4	13.0	23.7	33.3	49.1	60.1	99.5
M,s	Partial safety factor:	[-]	1.40	1.40	1.40	1.40	1.40	1.40	1.40
	OUT FAILURE				-	-	-	1 -	1 -
	andard embedment depth								
I _{Rk,p}	Characteristic resistance in C20/25 uncracked concrete:	[kN]	3)	³⁾	19.0	³⁾	³⁾	³⁾	3)
1) ns 2) 2	Installation safety factor:	[-]				1.0			•
		C30/37				1.22			
ר ^c	Increasing factors for N ⁰ _{Rk,c} :	C40/50				1.41			
		C50/60				1.55			
Re	duced embedment depth				•	•	T		
I _{Rk,p}	Characteristic resistance in C20/25 uncracked concrete:	[kN]		10	³⁾	³⁾		³⁾	3)
1) ns 2) 2	Installation safety factor:	[-]	1.0 1.0					1.0	
		C30/37		1.22				1	.22
r _c Incre	Increasing factors for N ⁰ _{Rk,c} :	C40/50			1.41			1.41	
	-	C50/60			1.55			1.55	
CONC	RETE CONE FAILURE AND SPL	TTING FA	LURE						
Sta	andard embedment depth								
ef,std	Effective anchorage depth:	[mm]	40	48	55	65	75	84	103
ucr,N	Factor for uncracked concrete:	[-]				11,0			
2) 1	Factor for uncracked concrete:	[-]				10.1			
1) ns 2) 2	Installation safety factor:	[-]				1.0			
cr,N	Concrete cone failure:	[mm]				3 x h _{ef}			
cr,N		[mm]	100			1.5 x h _€			
cr,sp	 Splitting failure: 	[mm]	160	192	220	260	300	280	360
cr,sp Dod		[mm]	80	96	110	130	150	140	180
	luced embedment depth Effective anchorage depth:	[mm]	_	35	42	50		65	75
ef,std 1)	Factor for uncracked concrete:	[mm] [-]		- 55	11.0	- 50			
1) ucr,N 2) 1	Factor for uncracked concrete:	[-]	<u> 11.0</u> <u> 11.0</u> <u> 10.1</u> <u> 10.1</u>						
1 ns 2) 2	Installation safety factor:	[-]	<u>1.0</u> <u>1.0</u>						
cr.N		[mm]		1	3 x h _{ef}			3	x h _{ef}
cr,N	Concrete cone failure	[mm]			1.5 x h _{ef}	:			x h _{ef}
cr.sp		[mm]		140	168	200		260	300
cr.sp	 Splitting failure: 	[mm]		70	84	100		130	150

²⁾ Parameter relevant only for design according to EN 1992-4:2018
 ³⁾ Pull out failure is not decisive

MTH anchor

Performances

Characteristic values for tension loads

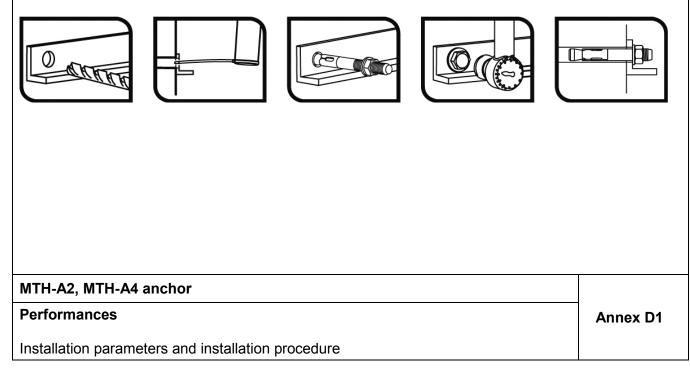
Table C3: Characteristic resistance values to shear loads of design method A according to ETAG 001, Annex C or EN 1992-4 for MTH anchor

мтц.	GALVANISED ANCHOR					Per	forman	ces		
	GALVANISED ANCHUR			M6	M8	M10	M12	M14	M16	M20
STEE	L FAILURE WITHOUT LEV	ER ARM								
V _{Rk,s}	Characteristic resistance:		[kN]	5.1	9.3	14.7	20.6	28.1	38.4	56.3
k ₇ ¹⁾	Ductility factor:		[-]				1.0			
γM,s	Partial safety factor:		[-]				1.25			
STEE	L FAILURE WITH LEVER A	ARM								
M ⁰ _{Rk,s}	Characteristic bending mome	ent:	[Nm]	7.7	19.1	38.1	64.1	102.2	163.1	298.5
γM,s	Partial safety factor:		[-]				1.25			
CONC	RETE PRYOUT FAILURE									
k ₈ ¹⁾	k factor:	for h _{ef,std}	[-]	1.0	1.0	1.0	2.0	2.0	2.0	2.0
k ²⁾	K TACIOT.	for h _{ef,red}	[-]		1.0	1.0	1.0		2.0	2.0
$\gamma_{ins}^{(1)}$ $\gamma_{2}^{(2)}$	Installation safety factor:		[-]				1.0			
CONC	RETE EDGE FAILURE									
1.	Effective length of anchor:	for h _{ef,std}	[mm]	40	48	55	65	75	84	103
l _f	-	for h _{ef,red}	[mm]		35	42	50		65	75
d _{nom}	Outside diameter of anchor:		[mm]	6	8	10	12	14	16	20
$\gamma_{ins}^{(1)}$ $\gamma_{2}^{(2)}$	Installation safety factor:		[-]				1.0			

¹⁾ Parameter relevant only for design according to EN 1992-4:2018
 ²⁾ Parameter relevant only for design according to ETAG 001, Annex C

Table C4: Displacements under tension loads for MTH

MTH: GALVANISED ANCHOR				Per	forman	ces		
WITH. GALVANISED ANCHOR		M6	M8	M10	M12	M14	M16	M20
Standard embedment depth								
Tension load in non cracked concrete:	[kN]	3.8	6.6	9.0	12.6	15.6	18.5	25.1
δ _{N0} Dianlacoment:	[mm]	0.4	0.7	1.0	1.2	1.3	1.9	2.2
$\overline{\delta_{N^{\infty}}}$ Displacement:	[mm]	1.8	2.1	2.4	2.6	2.7	3.3	3.8
Reduced embedment depth								
Tension load in non cracked concrete:	[kN]		4.8	6.5	8.5		12.6	15.6
δ _{N0} Displacement:	[mm]		0.3	0.6	1.0		1.6	1.9
 δ _{N∞} Displacement:	[mm]		1.4	1.7	2.1		2.7	3.0


Table C5: Displacements under shear loads for MTH

MTH: GALVANISED ANCHOR				Per	forman	ces		
WITH: GALVANISED ANCHOR		M6	M8	M10	M12	M14	M16	M20
Standard embedment depth								
Shear load in non cracked concrete:	[kN]	2.9	5.3	8.4	11.8	16.0	21.9	32.1
δ _{V0} Displacement	[mm]	0.65	2.80	1.75	2.45	2.78	3.53	4.13
$\delta_{V^{\infty}}$ Displacement:	[mm]	0.98	4.20	2.63	3.68	4.16	5.29	6.19
Reduced embedment depth	•				•	•		
Shear load in non cracked concrete:	[kN]		5.3	8.4	11.8		21.9	32.1
δ _{V0} Displacement:	[mm]		0.59	1.22	1.10		3.10	3.40
 δ _{V∞} Displacement:	[mm]		0.89	1.83	1.65		4.60	5.10
ITH anchor								
Performances Characteristic values for shear loads Displacements under tension and she	ar loads						An	nex C

Table D1: Installation parameters for MTH-A2, MTH-A4 anchor

MTH-/	A2, MTH-A4: STAINLESS STEEL ANCH	IOR	Performances						
Insta	Ilation parameters		M6	M8	M10	M12	M16	M20	
d ₀	Nominal diameter of drill bit:	[mm]	6	8	10	12	16	20	
d _f	Fixture clearance hole diameter:	[mm]	7	9	12	14	18	22	
T _{inst}	Nominal installation torque:	[Nm]	7	20	35	60	120	240	
St	andard embedment depth								
L _{min}	Minimum length of the bolt:	[mm]	60	75	85	100	125	160	
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	110	130	168	206	
h ₁	Depth of drilled hole ≥	[mm]	55	65	75	85	110	135	
h _{nom}	Overall anchor embed depth in concrete:	[mm]	49.5	59.5	66.5	77	103.5	125	
h _{ef,std}	Effective anchorage depth:	[mm]	40	48	55	65	84	103	
t _{fix}	Thickness of fixture for DIN 125 washer ≤	[mm]	L-58	L-70	L-80	L-92	L-122	L-147	
t _{fix}	Thickness of fixture for DIN 9021 or DIN 440 washer ≤	[mm]	L-58	L-71	L-80	L-94	L-124	L-149	
S _{min}	Minimum allowable spacing:	[mm]	50	65	70	85	110	135	
C _{min}	Minimum allowable distance:	[mm]	50	65	70	85	110	135	
Re	educed embedment depth								
L _{min}	Minimum length of the bolt:	[mm]		60	70	80			
h _{min}	Minimum thickness of concrete member:	[mm]		100	100	100			
h ₁	Depth of drilled hole:	[mm]		50	60	70			
h _{nom}	Overall anchor embed depth in concrete:	[mm]		46.5	53.5	62			
h _{ef,red}	Effective anchorage depth:	[mm]		35	42	50			
t _{fix}	Thickness of fixture for DIN 125 washer ≤	[mm]		L-57	L-67	L-77			
t _{fix}	Thickness of fixture for DIN 9021 or DIN 440 washer ≤	[mm]		L-58	L-67	L-79			
S _{min}	Minimum allowable spacing:	[mm]		65	70	85			
C _{min}	Minimum allowable distance:	[mm]		65	70	85			

Installation process

Performances										
ITH-A	A2, MTH-A4: STAINLESS STEEL AM	NCHOR	M6	M8	M10	M12	M16	M20		
TEEI	LFAILURE									
Rk,s	Characteristic resistance:	[kN]	10.1	19.1	34.3	49.6	85.9	140.7		
M,s	Partial safety factor:	[-]			1	.68				
	OUT FAILURE									
	andard embedment depth									
I _{Rk,p}	Characteristic resistance in C20/25 uncracked concrete:	[kN]	3)	12	16	25	35	50		
1) ins 2) 2	Installation safety factor:	[-]		1.0		1	.2	I		
	duced embedment depth									
	Characteristic resistance in C20/25									
I _{Rk,p}	uncracked concrete:	[kN]		9	12	16				
1) ns 2) 2	Installation safety factor:	[-]			1.2					
	_	C30/37				.22				
ر	Increasing factors for N ⁰ _{Rk,c} :	C40/50				.41				
		C50/60			1	.55				
	RETE CONE FAILURE AND SPLIT	TING FAILU	JRE							
	andard embedment depth		-	-		1	-			
ef,std	Effective anchorage depth:	[mm]	40	48	55	65	84	103		
1) ucr,N 2)	Factor for uncracked concrete:	[-]				1.0				
2) 1 1)	Factor for uncracked concrete:	[-]			1	0.1				
1) ns 2) 2	Installation safety factor:	[-]	1	.0		1	.2			
cr,N	- Concrete cone failure:	[mm]				x h _{ef}				
cr,N		[mm]				5 x h _{ef}		1		
cr,sp	- Splitting failure:	[mm]	160	192	220	260	336	412		
cr,sp	opitting laidle.	[mm]	80	96	110	130	168	206		
	duced embedment depth									
ef,std 1) ucr,N	Effective anchorage depth:	[mm]		35	42	50				
ucr,N	Factor for uncracked concrete:	[-]				1.0				
2) 1 1)	Factor for uncracked concrete:	[-]			1	0.1		r –		
1) ns 2)	Installation safety factor:	[-]			1.2					
cr,N		[mm]			3 x h _{ef}					
cr,N	- Concrete cone failure:	[mm]			1.5 x h _{ef}					
cr,sp		[mm]		140	168	200				
cr sp	 Splitting failure: 									

⁽¹⁾ Parameter relevant only for design according to EN 1992-4:2018 ⁽²⁾ Parameter relevant only for design according to ETAG 001, Annex C ⁽³⁾ Pull out failure is not decisive

MTH-A2, MTH-A4 anchor

Performances

Characteristic values for tension loads

Table D3: Characteristic resistance values to shear loads of design method A according to ETAG 001, Annex C or EN 1992-4 for MTH-A2, MTH-A4 anchor

MTH-A2, MTH-A4: STAINLESS STEEL ANCHOR			Performances							
			M6	M8	M10	M12	M16	M20		
STEEL FAILURE WITHOUT LEVER ARM										
V _{Rk,s}	Characteristic resistance:		[kN]	6.0	10.9	17.4	25.2	47.1	73.5	
$k_7^{(1)}$	Ductility factor: [-]		1.0							
γM,s	Partial safety factor		[-]	1.52						
STEEL FAILURE WITH LEVER ARM										
M ⁰ _{Rk,s}	Characteristic bending mom	ent:	[Nm]	9.2	22.5	44.9	78.6	200	389	
γM,s	Partial safety factor:	[-] 1.52								
CONCRETE PRYOUT FAILURE										
$k_8^{(1)}$	K IACIOI.	for h _{ef,std}	[-]	1.0	1.0	1.0	2.0	2.0	2.0	
k ²⁾		for h _{ef,red}	[-]		1.0	1.0	1.0			
$\gamma_{ins}^{(1)}$ $\gamma_{2}^{(2)}$	Installation safety factor:		[-]	1.0						
CONCRETE EDGE FAILURE										
Ŀ	Effective length of anchor	for h _{ef,std}	[mm]	40	48	55	65	84	103	
lf	under shear loads:	for h _{ef,red}	[mm]		35	42	50			
d _{nom}	Outside diameter of anchor:		[mm]	6	8	10	12	16	20	
$\gamma_{ins}^{(1)}$ $\gamma_{2}^{(2)}$	Installation safety factor:		[-]				1.0			

¹⁾ Parameter relevant only for design according to EN 1992-4:2018
 ²⁾ Parameter relevant only for design according to ETAG 001, Annex C

Table D4: Displacements under tension loads for MTH-A2, MTH-A4

MTH-A2, MTH-A4: STAINLESS STEEL ANCHOR		Performances							
WITH-AZ, WITH-A4. STAINLESS STEEL ANCHOR			M8	M10	M12	M16	M20		
Standard embedment depth									
Tension load in non cracked concrete:	[kN]	4.3	5.7	6.3	9.9	13,8	19.8		
δ _№ Displacement: δ _№	[mm]	0.42	0.22	0.17	0.19	0.19	0.11		
	[mm]	1.33	1.33	1.33	1.33	1.33	1.33		
Reduced embedment depth									
Tension load in non cracked concrete:	[kN]		4.2	5.7	7.6				
δ_{N0} Displacement:	[mm]		0.07	0.04	0.32				
 δ _{N∞} Displacement:	[mm]		0.60	0.60	0.60				

Table D5: Displacements under shear loads for MTH-A2, MTH-A4

MTH-A2, MTH-A4: STAINLESS STEEL ANCHOR		Performances						
WITH-AZ, WITH-A4. STAINLESS STEEL ANCHOR			M8	M10	M12	M16	M20	
Standard embedment depth								
Shear load in non cracked concrete:	[kN]	2.8	5.1	8.1	11.8	22.1	34.5	
 δ _{v∞} Displacement:	[mm]	1.66	1.79	3.83	4.13	5.75	6.59	
	[mm]	2.49	2.68	5.74	6.19	8.62	9.88	
Reduced embedment depth								
Shear load in non cracked concrete:	[kN]		5.1	8.1	11.8			
δ _{V0} Displacement:	[mm]		0.60	3.83	4.13			
 δ _{V∞} Displacement:	[mm]		0.90	5.74	6.19			
MTH-A2, MTH-A4 anchor								
Performances					Ann	Annex D3		

Characteristic values for shear loads

Displacements under tension and shears