

European Technical Assessment

ETA 14/0135 of 27/06/2018

English translation prepared by IETcc. Original version in Spanish language

General Part

Technical Assessment Body issuing the ETA designated according to Art. 29 of Regulation (EU) 305/2011:	Instituto de Ciencias de la Construcción Eduardo Torroja (IETcc)
Trade name of the construction product:	HEHO / HECLO drop in anchor
Product family to which the construction product belongs:	Deformation controlled anchor made of galvanized steel of sizes M6, M8, M10, M12, M16 and M20 for use in non-cracked concrete
Manufacturer:	Index - Técnicas Expansivas S.L. Segador 13 26006 Logroño (La Rioja) Spain. website: <u>www.indexfix.com</u>
Manufacturing plants:	Index plant 2 Index plant 7
This European Technical Assessment contains:	10 pages including 3 annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of:	European Technical Assessment EAD 330232-00- 0601 "Mechanical Fasteners for use in concrete", ed. October 2016
This ETA is a corrigendum of:	ETA 14/0135 issued on 01/03/2018

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to article 25 (3) of Regulation (EU) No 305/2011.

SPECIFIC PART

1. Technical description of the product

The Index HEHO / HECLO in the range of M6 to M20 is an anchor made of galvanised steel, which is placed into a drilled hole and anchored by deformation-controlled expansion. The anchorage is characterised by friction between the sleeve and concrete.

Product and product description is given in annex A.

2. Specification of the intended use in accordance with the applicable European Assessment Document.

The performances given in section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a mean to choosing the right products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static or quasi static loading	See annexes C1 to C3
Displacements under tension and shear loads	See annexes C2 and C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for class A1

3.3 Hygiene, health and the environment (BWR 3)

This requirement is not relevant for the anchors.

3.4 Safety in use (BWR 4)

The essential characteristics regarding safety in use are included under the basic works requirements Mechanical resistance and stability.

3.5 Protection against noise (BWR 5)

This requirement is not relevant for the anchors.

3.6 Energy economy and heat retention (BWR 6)

This requirement is not relevant for the anchors.

3.7 Sustainable use of natural resources (BWR 7)

No performance determined

4. Assessment and Verification of Constancy of Performances (hereinafter AVCP) system applied, with reference to its legal base

The applicable European legal act for the system of Assessment and Verification of Constancy of Performances (see annex V to Regulation (EU) No 305/2011) is 96/582/EC.

The system to be applied is 1.

5. Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document.

The technical details necessary for the implementation of the AVCP system are laid down in the quality plan deposited at Instituto de Ciencias de la Construcción Eduardo Torroja.

Instituto de Ciencias de la Construcción Eduardo Torroja CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

C/ Serrano Galvache n.º 4. 28033 Madrid. Tel: (+34) 91 302 04 40 Fax. (+34) 91 302 07 00 www.ietcc.csic.es

On behalf of the Instituto de Ciencias de la Construcción Eduardo Torroja Madrid, 27th of June 2018

Marta M^a Castellote Armero Director

Product									
HEH	O, HECLO anchor								
		Ē					Ţ	-	
						_			
	HEHO and	hor			HEC	LO anch	or		
Identi	fication on sleeve: Inde	av logo + "			+ Motric: (а 🗒 НЕН			
luenti	incation on siecve. Inde	sk logo i			· metric, t	s.g. ∎ ri∟i			
	Anchor dimensions	[]	M6	M8	M10	M12	M16	M20	
	ØD: External diameter	[mm]	8 M6	10 M8	12 M10	15 M12	20 M16	25 M20	
	L: total length	[mm]	25	30	40	50	65	80	
0									
Setti	ng tool								
								ØDa	
						-			
	Q								
						Ls			
	Setting tool dimension	ons	M6	M8	M10	M12	M16	M20	
	Ø D ₁	[mm]	7,5	9,5	11,5	14,5	18,0	22,0	
		[mm]	5,0 15	0,5 18	8,0 24	10,2 30	36	16,5 50	
	Setting tool could be asse	embled with a	a plastic ha	andle for har	nd protection	purposes			
HEHO. HEC	LO anchor								
Product des	scription							Annex A	1
Droduct	•								•
FIDUUCL									

Installed condition

- h_{ef}: Effective anchorage depth
- h_1 : Depth of drilled hole
- h_{nom}: Overall anchor embedment depth in the concrete
- h_{min}: Minimum thickness of concrete member
- t_{fix}: Thickness of fixture
- d₀: Nominal diameter of drill bit
- d_f: Fixture clearance hole diameter

Table A1: materials

ltem	Designation	Material for HEHO / HECLO
1	Sleeve	Carbon steel wire rod, zinc plated \geq 5 µm ISO 4042 A2
2	Cone	Carbon steel wire rod, zinc plated \geq 5 µm ISO 4042 A2
3	Plastic retainer	PVC

HEHO, **HECLO** anchor

Product description

Installed condition and Materials

Annex A2

Specifications of intended use

Anchorages subjected to:

• Static or quasi static loads

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206-1:2008
- Strength classes C20/25 to C50/60 according to EN 206-1:2008
- Uncracked concrete

Use conditions (environmental conditions):

• Anchorages subjected to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete.
- Verifiable calculation rules and drawings are prepared taking into account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed for design method A in accordance with:
 - ETAG 001, Annex C, edition August 2010
 - o FprEN1992-4:2016

Installation:

- Hole drilling by rotary plus hammer mode.
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of aborted hole or smaller distance if the aborted hole is filled with high strength mortar and if under shear or oblique tension load it is not the direction of the load application.
- The bolt or threaded rod to be used shall be property class 4.6 / 5.6 / 5.8 / 6.8 or 8.8 according to ISO 898-1.
- The length of the bolt shall be determined as:
 - Minimum bolt length = $t_{fix} + I_{s,min}$
 - Maximum bolt length = $t_{fix} + I_{s,max}$

HEHO, HECLO anchor

Intended use

Annex B1

Specifications

Table C1: Installation parameters for HEHO, HECLO anchor

lu stall	Installation parameters		Performances						
Instal			M6	M8	M10	M12	M16	M20	
d _o	Nominal diameter of drill bit:	[mm]	8	10	12	15	20	25	
D	Thread diameter:	[mm]	M6	M8	M10	M12	M16	M20	
d _f	Fixture clearance hole diameter ≤	[mm]	7	9	12	14	18	22	
T _{inst}	Maximum installation torque:	[Nm]	4	11	17	38	60	100	
I _{s,min}	Minimum screwing depth:	[mm]	6	8	10	12	16	20	
I _{s,max}	Maximum screwing depth:	[mm]	10	13	17	21	27	34	
h _{min}	Minimum thickness of concrete member:	[mm]	100	100	100	100	130	160	
h ₁	Depth of drilled hole:	[mm]	27	33	43	54	70	86	
h _{nom}	Overall anchor embedm. depth in the concrete:	[mm]	25	30	40	50	65	80	
h _{ef}	Effective anchorage depth:	[mm]	25	30	40	50	65	80	
S _{min}	Minimum allowable spacing:	[mm]	60	60	80	100	130	160	
C _{min}	Minimum allowable distance:	[mm]	105	105	140	175	230	280	

Installation process

Table C2: Characteristic values to tension loads of design method A according to ETAG 001, Annex C, CEN/TS 1992-4 or FprEN1992-4.2016 for HEHO, HECLO anchor

Characteristic values of resistance to tension loads of			Performances						
desigr	design according to design method A				M10	M12	M16	M20	
Tensio	on loads: steel failure								
N _{Rk.s}	Tension steel char. resistance, steel class 4.6:	[kN]	8,0	14,6	23,2	33,7	62,8	98,0	
γMs	Partial safety factor:	[-]	2,0	2,0	2,0	2,0	2,0	2,0	
N _{Rk.s}	Tension steel char. resistance, steel class 4.8:	[kN]	8,0	14,6	18,2	33,7	62,8	95,1	
γMs	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5	1,5	
N _{Rk,s}	Tension steel char. resistance, steel class 5.6:	[kN]	10,1	18,3	18,2	42,2	78,5	122,5	
γMs	Partial safety factor:	[-]	2,0	2,0	1,5	2,0	2,0	2,0	
N _{Rk,s}	Tension steel char. resistance, steel class 5.8:	[kN]	10,1	17,6	18,2	35,1	65,0	95,1	
γMs	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5	1,5	
N _{Rk,s}	Tension steel char. resistance, steel class 6.8	[kN]	12,1	17,6	18,2	35,1	65,0	95,1	
γMs	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5	1,5	
N _{Rk.s}	Tension steel char. resistance, steel class 8.8	[kN]	13,1	17,6	18,2	35,1	65,0	95,1	
γMs	Partial safety factor:	[-]	1,5	1,5	1,5	1,5	1,5	1,5	
Tensio	on loads: pull-out failure in concrete								
N _{Rk,p,} ucr	Tension characteristic resistance in C20/25 uncracked concrete:	[kN]	3)	3)	3)	3)	3)	3)	
	C30/37	[-]	1,02	1,22	1,15	1,15	1,22	1,19	
Ψ_{c}	Increasing factor for N_{Bkp}^{0} : C40/50	[-]	1,04	1,41	1,29	1,28	1,41	1,35	
10	C50/60	[-]	1,05	1,55	1,37	1,37	1,55	1,46	
$\gamma_{ins}^{1)}$ $\gamma_{2}^{2)}$	Installation safety factor:	[-]	1,2	1,2	1,4	1,4	1,4	1,4	
Tensio	on loads: concrete cone and splitting failu	re	•				•	•	
h _{ef}	Effective embedment depth:	[mm]	25	30	40	50	65	80	
k _{ucr,N} ¹⁾	Factor for uncracked concrete:	[-]	11.0						
k _{ucr,N} ²⁾	Factor for uncracked concrete:	[-]			10).1			
$\gamma_{ins}^{(1)}$ $\gamma_{2}^{(2)}$	Installation safety factor:	[-]	1,2	1,2	1,4	1,4	1,4	1,4	
S _{cr,N}	Conoroto cono failuro:	[mm]		3 x h _{ef}					
C _{cr,N}					1.5	x h _{ef}			
S _{cr,sp}	Splitting failura:	[mm]	150	180	240	300	390	480	
C _{cr,sp}		[mm]	75	90	120	150	195	240	
Displa	cements under tension loads								
N	Service tension load in uncracked concrete C20/25 to C50/60:	[kN]	2,4	3,4	6,0	7,4	17,8	18,2	
δ _{N0}	Short term displacement under tension loads:	[mm]	0,1	0,1	0,1	0,1	0,1	0,1	
δ _{N∞}	Long term displacement under tension loads:	[mm]	0,3	0,3	0,3	0,3	0,3	0,3	

¹⁾ Parameter relevant only for design according to FprEN 1994-2:2016
²⁾ Parameter relevant only for design according to ETAG 001, Annex C
³⁾ Pull out failure does not govern

HEHO, HECLO anchor

Performances

Characteristic values for tension loads

Annex C2

Table C3: Characteristic values to shear loads of design method A according to ETAG 001, Annex C, CEN/TS 1992-4 or FprEN1992-4:2016 for HEHO, HECLO anchor

design according to design method A M6 M8 M10 M12 M16 M2 Shear loads: steel failure without lever arm . <t< th=""><th colspan="2">Characteristic values of resistance to shear loads</th><th>ds of</th><th></th><th></th><th>Perform</th><th>nances</th><th></th><th></th></t<>	Characteristic values of resistance to shear loads		ds of			Perform	nances		
Shear loads: steel failure without lever arm VRx.a Shear steel char. resistance, steel class 4.6: [KN] 4.0 7.3 11.6 16.8 31.4 49. Ymax Partial safety factor. [-] 1.67<	desig	n according to design method A		M6	M8	M10	M12	M16	M20
Vex.s Shear steel char. resistance, steel class 4.6: [kN] 4.0 7.3 11.6 16.8 31.4 49, γ_{Res} Partial safety factor: [-] 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.68 31.4 49, Vex.s Shear steel char. resistance, steel class 5.6 [kN] 5.0 9.1 9.1 21.1 39.2 61. Vex.s Shear steel char. resistance, steel class 5.8 [kN] 5.0 8.8 9.1 17.5 32.5 47. Vex.s Shear steel char. resistance, steel class 6.8 [kN] 6.0 8.8 9.1 17.5 32.5 1.25 1.	Shear	loads: steel failure without lever arm				•	•	•	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{Rk,s}	Shear steel char. resistance, steel class 4.6:	[kN]	4,0	7,3	11,6	16,8	31,4	49,0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67	1,67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{Rk,s}	Shear steel char. resistance, steel class 4.8:	[kN]	4,0	7,3	9,1	16,8	31,4	47,5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{Rk,s}	Shear steel char. resistance, steel class 5.6	[kN]	5,0	9,1	9,1	21,1	39,2	61,2
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,67	1,67	1,25	1,67	1,67	1,67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{Rk,s}	Shear steel char. resistance, steel class 5.8	[kN]	5.0	8,8	9,1	17,5	32,5	47,5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{Rk.s}	Shear steel char. resistance, steel class 6.8	[kN]	6,0	8,8	9,1	17,5	32,5	47,5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
γ_{Ma} Partial safety factor: [-] 1,25 <th1,25< th=""> 1,25 1,25</th1,25<>	V _{Rk.s}	Shear steel char. resistance, steel class 8.8:	[kN]	6,5	8,8	9,1	17,5	32,5	47,5
Shear loads: steel failure with lever arm $M_{Rk,s}^0$ Characteristic bending moment, steel class 4.6 [Nm] 6,1 15.0 29.9 52.4 133.3 259 γ_{Ms} Partial safety factor: [-] 1,67	γMs	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Shear	loads: steel failure with lever arm		· · · · ·					
γ_{Ms} Partial safety factor: [-] 1,67 1,66 1,25 <th1,25< th=""> 1,25 1,25</th1,25<>	M ⁰ _{Rk.s}	Characteristic bending moment, steel class 4.6	[Nm]	6,1	15.0	29,9	52,4	133,3	259,8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67	1,67
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M ⁰ _{Rk.s}	Characteristic bending moment, steel class 4.8	[Nm]	6,1	15.0	29,9	52,4	133,3	259,8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
YMs Partial safety factor: [-] 1,67 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,25 <t< td=""><td>M⁰_{Rk.s}</td><td>Characteristic bending moment, steel class 5.6</td><td>[Nm]</td><td>7,6</td><td>18,8</td><td>37,4</td><td>65,5</td><td>166,6</td><td>324,8</td></t<>	M ⁰ _{Rk.s}	Characteristic bending moment, steel class 5.6	[Nm]	7,6	18,8	37,4	65,5	166,6	324,8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,67	1,67	1,67	1,67	1,67	1,67
YMs Partial safety factor: [-] 1,25 <t< td=""><td>M⁰_{Rk.s}</td><td>Characteristic bending moment, steel class 5.8</td><td>[Nm]</td><td>7,6</td><td>18,8</td><td>37,4</td><td>65,5</td><td>166,6</td><td>324,8</td></t<>	M ⁰ _{Rk.s}	Characteristic bending moment, steel class 5.8	[Nm]	7,6	18,8	37,4	65,5	166,6	324,8
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	γMs	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
YMs Partial safety factor: [-] 1,25 <t< td=""><td>M⁰_{Rk.s}</td><td>Characteristic bending moment, steel class 6.8</td><td>[Nm]</td><td>9,2</td><td>22,5</td><td>44,9</td><td>78,7</td><td>199,9</td><td>389,7</td></t<>	M ⁰ _{Rk.s}	Characteristic bending moment, steel class 6.8	[Nm]	9,2	22,5	44,9	78,7	199,9	389,7
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	γMs	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
Yms Partial safety factor: [-] 1,25 <t< td=""><td>M⁰_{Rk.s}</td><td>Characteristic bending moment, steel class 8.8</td><td>[Nm]</td><td>12,2</td><td>30,0</td><td>59,9</td><td>104,9</td><td>266,6</td><td>519,7</td></t<>	M ⁰ _{Rk.s}	Characteristic bending moment, steel class 8.8	[Nm]	12,2	30,0	59,9	104,9	266,6	519,7
Shear loads: concrete pryout failure k_8^{10} k factor:[-]1,01,01,02,02,0 k_{2}^{20} Installation safety factor:[-]1.01.01.02,02,0Shear loads: concrete edge failure V_{22} Installation safety factor:[-]1.0Installation safety factor: V_{1} Effective anchorage depth under shear loads:[mm]253040506580 d_{nom} Outside anchor diameter:[mm]81012152025 V_{122}^{Vins} Installation safety factor:[-]1,01,01,018,627, V_{122}^{Vins} Installation safety factor:[-]1,01,01,01,01,0VService shear load in uncracked concrete C20/25 to C50/60:[kN]3,85,05,210,118,627, $\overline{0}_{V0}$ Short term displacement under shear loads:[mm]2,42,42,41,31,01,0 $\overline{0}_{Vn}$ Long term displacement under shear loads:[mm]3,53,53,52,01,51,6	γMs	Partial safety factor:	[-]	1,25	1,25	1,25	1,25	1,25	1,25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Shear	loads: concrete pryout failure							
$\begin{array}{c c c c c c c c } & & & & & & & & & & & & & & & & & & &$	k ₈ ¹⁾ k ²⁾	k factor:	[-]	1,0	1,0	1,0	1,0	2,0	2,0
Shear loads: concrete edge failure I_f Effective anchorage depth under shear loads: $[mm]$ 253040506580 d_{nom} Outside anchor diameter: $[mm]$ 81012152025 $\gamma_{12}^{(n)}$ Installation safety factor: $[-]$ $1,0$ 1012152025Displacements under shear loadsVService shear load in uncracked concrete C20/25 to C50/60: $[kN]$ 3,85,05,210,118,627, δ_{V0} Short term displacement under shear loads: $[mm]$ 2,42,41,31,01,0 δ_{Vm} Long term displacement under shear loads: $[mm]$ 3,53,53,52,01,51,5	$\gamma_{ins}^{1)}$ $\gamma_{2}^{2)}$	Installation safety factor:	[-]	1.0					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Shear	loads: concrete edge failure							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	l _f	Effective anchorage depth under shear loads:	[mm]	25	30	40	50	65	80
$\begin{array}{c c} & & & & & & & \\ \hline \gamma_{1ns}^{Vins} \\ \gamma_{2}^{(2)} \end{array} \\ \hline \text{Installation safety factor:} & [-] & 1,0 \\ \hline \textbf{Displacements under shear loads} \\ \hline \textbf{V} & \begin{array}{c} \text{Service shear load in uncracked concrete} \\ \text{C20/25 to C50/60:} \\ \hline \overline{\delta}_{V0} \end{array} \\ \hline \textbf{Short term displacement under shear loads:} & [mm] \\ \hline \textbf{2,4} \end{array} \\ \hline \textbf{2,4} $ \\ \hline \textbf{2,4} \end{array} \\ \hline \textbf{2,4} \\ \hline \textbf{2,4} \end{array} \\ \hline \textbf{2,4} \\ \hline \textbf{2,4} \end{array} \\ \hline \textbf{2,4} \\ \\ \hline \textbf{2,4} \\ \hline 2	d _{nom}	Outside anchor diameter:	[mm]	8	10	12	15	20	25
Displacements under shear loadsVService shear load in uncracked concrete C20/25 to C50/60:[kN] $3,8$ $5,0$ $5,2$ $10,1$ $18,6$ $27,$ $\overline{\delta}_{V0}$ Short term displacement under shear loads:[mm] $2,4$ $2,4$ $2,4$ $1,3$ $1,0$ $1,0$ $\overline{\delta}_{V0}$ Long term displacement under shear loads:[mm] $3,5$ $3,5$ $3,5$ $2,0$ $1,5$ $1,6$	$\gamma_{ins}^{(1)}$ $\gamma_{2}^{(2)}$	Installation safety factor:	[-]	1,0					
VService shear load in uncracked concrete C20/25 to C50/60:[kN] $3,8$ $5,0$ $5,2$ $10,1$ $18,6$ $27,6$ δ_{V0} Short term displacement under shear loads:[mm] $2,4$ $2,4$ $2,4$ $1,3$ $1,0$ $1,0$ δ_{V0} Long term displacement under shear loads:[mm] $3,5$ $3,5$ $3,5$ $2,0$ $1,5$ $1,5$	Displa	acements under shear loads							
δ_{V0} Short term displacement under shear loads: [mm] 2,4 2,4 2,4 1,3 1,0 1,0 δ_{Vm} Long term displacement under shear loads: [mm] 3.5 3.5 3.5 2.0 1.5 1.5	V	Service shear load in uncracked concrete C20/25 to C50/60:	[kN]	3,8	5,0	5,2	10,1	18,6	27,2
δ_{Vm} Long term displacement under shear loads: [mm] 3.5 3.5 3.5 2.0 1.5 1.5	δ_{V0}	Short term displacement under shear loads:	[mm]	2,4	2,4	2,4	1,3	1,0	1,0
	δ _{V∞}	Long term displacement under shear loads:	[mm]	3,5	3,5	3,5	2,0	1,5	1,5

²⁾ Parameter relevant only for design according to ETAG 001, Annex C

HEHO, HECLO anchor

Performances

Characteristic values for shear load.

Annex C3